Final Exam - Review 2 - Problems

Peyam Ryan Tabrizian

Wednesday, May 4th, 2011

1 Definition of the integral

Problem 1:
Evaluate $\int_{1}^{2} x^{2} d x$ using the definition of the integral. You may use the facts that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Problem 2:

Use the midpoint rule with $n=4$ to approximate $\int_{1}^{2} e^{-x^{2}} d x$

2 Fundamental theorem of calculus

Problem 3: Differentiate $g(x)=\int_{e^{x}}^{\sin (2 x)} \sin ^{-1}(t) d t$
Problem 4: Evaluate:
(a) $\int \frac{d}{d x} \sqrt{|\sin (x)+\cos (x)|} d x$ and (b) $\frac{d}{d x} \int \sqrt{|\sin (x)+\cos (x)|} d x$

Problem 5: Evaluate the following integrals:
(a) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(b) $\int_{-1}^{1} \tan \left(\frac{\pi}{4} x^{3}\right) d x$
(c) $\int_{0}^{2} \sqrt{4-x^{2}} d x$
(d) $\int \frac{x^{3}}{1+x^{4}} d x$
(e) $\int \frac{1+x}{x^{2}+1} d x$
(f) $\int_{0}^{1} \frac{\tan ^{-1}(x)}{1+x^{2}} d x$
(g) $\int \frac{d x}{9 x^{2}+1}$
(h) $\int_{1}^{2} x \sqrt[4]{x-1} d x$

3 Areas

Problem 6

Find the area of the region bounded by the parabola $y=x^{2}-4$ and the two lines connecting $(-2,0)$ with $\left(0, \frac{1}{2}\right)$, and $\left(0, \frac{1}{2}\right)$ with $(2,0)$

4 Volumes

Problem 7

Show that the volume of a ball with radius R is $\frac{4}{3} \pi R^{3}$

Problem 8

Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}$ and $y=x^{3}$ about $y=2$

Problem 9

Find the volume of the solid obtained by rotating the region bounded by $y=2 x^{2}$ and $y=3 x-x^{2}$ about the y-axis

Problem 10

Find the volume of a cone with radius r and height h

Problem 11

Find the volume of the torus/donut obtained by rotating the disk of center $(2,0)$ and radius 1 about the y-axis.

